
Using PTXdist on Mac OS
based on PTXdist 2012.04

Bernhard Walle∗

2012-04-20

∗bernhard@bwalle.de

bernhard@bwalle.de

Contents

1. Motivation 3

2. Basics 4
2.1. Getting OpenSource Software on Mac OS . 4
2.2. Preparing the Hard Disk . 5

2.2.1. Creating and Using a Sparse Bundle . 6

3. Installing PTXdist 7
3.1. Requirements . 7

3.1.1. Mac OS . 7
3.1.2. Host compiler . 7

3.2. GNU Tools . 7
3.3. Installation . 8
3.4. First setup . 9

4. Building an OSELAS.Toolchain 11

5. Building an Embedded Linux project 12
5.1. Using OSELAS.BSP-Pengutronix-Generic . 12

5.1.1. Getting the BSP . 12
5.1.2. Building FSF GCC . 13
5.1.3. Building Qemu . 13
5.1.4. Running the System . 13

5.2. Using real Hardware . 14

6. Limitations 15
6.1. Building UBI or JFFS2 images . 15
6.2. Linux kernel . 15
6.3. Bootloader . 15

7. Using a Mac for Embedded Linux Development 16
7.1. Using a serial console . 16
7.2. Exporting directories via NFS . 16
7.3. Mounting ext2 partitions . 18

A. About this Document 19

B. Change History 20

Bibliography 21

2

1. Motivation

PTXdist (http://www.ptxdist.org) is a great way to build Embedded Linux systems. It downloads all
required components, conVgures them for cross-compilation and Vnally builds a target image and/or
target packages. In addition, it provides an easy way to build a cross-toolchain for most common
processors. Read [2] for a description how to use PTXdist.

While a Linux based host is normally the platform of choice for Embedded Linux development, it is
not absolutely necessary to use Linux for this. In commercial environments, it’s quite common to use
Microsoft Windows. Commerical Linux distributions such as MontaVista Linux provide Windows
IDEs. Under the hood, Cygwin is used for much of the work.

Since Mac OS is a BSD-based Unix, there’s no need for such an “emulation layer”. However, since
BSD is not GNU, and Mac OS doesn’t use the ELF binary format but Mach-O, things are not as easy
as it may seem.

The reader may ask why I use Mac OS to build Linux systems. Even on a Mac computer, Linux can be
installed for dual booting. However, I don’t like dual boot. You have to install, maintain and conVgure
everything twice, it takes a lot of time and even disk space. The more comfortable approach would
be to use some virtualization and install Linux there, which is what I do in parallel. So the answer
just may be just “because I can”.

But before starting with the manual I would like to thank the Pengutronix team for providing PTXdist
to the community and keeping it up-to-date. Especially I would like to thank Michael Olbrich for
reviewing and accepting my patches and Jürgen Beisert for the good documentation and for useful
comments to this document. Also I want to thank Andreas Bießmann who developed some of
the Mac OS-related patches especially for the toolchain and who gave valuable feedback on this
document.

3

http://www.ptxdist.org

2. Basics

This guide should make it a bit easier if you decide to use PTXdist on Mac OS the Vrst time. You
should read [1] and [2] before reading this documentation. I would also recommend you to install
and use PTXdist on Linux Vrst and get started with it. Using Linux in VirtualBox1 is probably the
easiest method if you don’t have a second computer that runs Linux.

Mac OS has a fancy GUI and you probably never ever need to use the command line if you do not
want. However, PTXdist is based on the command line, you need a Terminal to use it. You can use
Terminal.app from Apple, but I would recommend iTerm 22 as terminal emulator.

2.1. Getting OpenSource Software on Mac OS

While Mac OS comes with quite a lot (compared to Windows) command line tools, this is not suf-
Vcient to do Linux development. The set of commands available can be compared to a minimal
installation of a Linux distribution.

Instead of doing everything manually, people already built systems which makes it easy to install
additional (Unix-based) software on Mac OS:

• MacPorts is based on the BSD ports system. It installs everything from source and has quite a
huge number of packages3. It can be downloaded from http://www.macports.org and you need
to install Xcode from Apple including the command line utilities before. Its documentation [3]
contains everything you need to get started.

• Fink (http://www.Vnkproject.org) uses the package management tools and the package format
from Debian. Contrary to MacPorts, it has both binaries and can be built from source (but as
far as I know, the binaries are less up-to-date compared the source packages).

• Homebrew (http://mxcl.github.com/homebrew/) is an alternative to MacPorts.

As you may have guessed, I personally use MacPorts. When it matters, the documentation focusses
on MacPorts for simplicity. However, PTXdist is known to be work also with the tools installed with
Fink. In fact, it’s not required to use any of them. Just install the required tools manually.

1http://www.virtualbox.org
2http://www.iterm2.com
3sometimes there are even packages that Linux distributions like openSUSE don’t have in their repositories

4

http://www.macports.org
http://www.finkproject.org
http://mxcl.github.com/homebrew/
http://www.virtualbox.org
http://www.iterm2.com

2. Basics

2.2. Preparing the Hard Disk

Unfortunately, the default Vle system of Mac OS is case insensitive (but case preserving). So if a Vle
Foo exists and you create a Vle foo, then instead of creating a new Vle, the already existing Foo is
used.

As PTXdist is a Linux build system, it assumes a case sensitive Vle system. Luckily, the Mac OS Vle
system HFS+ can also be used in a case sensitive mode. Whenever you create a Vle system with Disk
Utility, you can choose the case sensitive variant. So there are various ways to solve the problem
with the case insensitive Vle Vle system:

1. Re-install Mac OS on a case sensitive HFS+ Vle system.
This option is not recommended as some applications assume a case insensitive Vle system and
will not run on a case sensitive Vle system. A famous example are the Adobe applications.

2. Use a network Vle system (NFS in that case).
This is just slow and not recommended at all.

3. Use an external disk and format it using a case sensitive Vle system. 4

If you want to use PTXdist only on this external disk, everything is Vne with that solution.
But note that the speed of external disks (except maybe ones connected with Thunderbolt5) is
normally lower compared to internal disks.

4. Use a case sensitive data partition on your internal disk.
As Mac OS partitions can be resized online, this works quite well. Only if you have installed
Windows or Linux on your Mac using BootCamp, you may experience problems. But if Mac OS
is the only operating system, this works Vne.

5. Use a disk image, a so-called sparse bundle.
This is just a Vle with a Vle system inside it. In Linux terms, the Vle is then “loopback mounted”.
Section 2.2.1 describes this approach.

It’s not required to install PTXdist itself in a case sensitive partition. Only the projects that are built
need to be located there. When building a PTXdist project, it automatically checks if the Vle system
is case insensitive and rejects the build in that case6

+ You may want to disable Spotlight for this image as it probably doesn’t contain anything useful
for indexing and it only makes your computer slower. To do so, execute mdutil -i off
/Volumes/Development on the attached volume. Just replace Development with the real
name of the volume.

To disable indexing only for some directories, you can add it to the list of excluded directories
in the System Settings→ Spotlight→ Privacy tab.

4For simplicity I would recommend HFS+.
5http://en.wikipedia.org/wiki/Thunderbolt_(interface)
6The check is performed in the check_dirs function in the ptxdist main program.

5

http://en.wikipedia.org/wiki/Thunderbolt_(interface)

2. Basics

2.2.1. Creating and Using a Sparse Bundle

You can create and maintain disk images using the Disk Utility which comes with Mac OS. However,
in my opinion it’s much easier on the command line using hdiutil(1). In order to create a new disk
image, just execute

% hdiutil create -size 100g \
-fs "Case-sensitive Journaled HFS+" \
-volname "Development" \
devel.sparsebundle

Of course you can choose another size than 100 Gigabytes as I did in the example above. As the
volume name is used as mount point in /Volumes, it’s recommended to not use any whitespace
inside.

After the image is created, you can actually mount it using

% hdiutil attach devel.sparsebundle

Now you should have an empty Vle system inside /Volume/Development which you can use to build
Embedded Linux Systems. To detach from it, i. e. to unmount it, use

% hdiutil detach /Volumes/Development

After detaching, you can even resize the image using the hdiutil resize command.

6

3. Installing PTXdist

3.1. Requirements

3.1.1. Mac OS

The documentation focusses on Mac OS 10.7 (Lion).

3.1.2. Host compiler

PTXdist requires a working host compiler. Apple bundles the compiler with the IDE. The guide has
been tested with following version of LLVM-GCC which comes with Xcode 4.3.2.

% gcc --version
i686-apple-darwin11-llvm-gcc-4.2 (GCC) 4.2.1 (Based on Apple Inc. build 5658) \

(LLVM build 2336.9.00)
Copyright (C) 2007 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Normally Xcode is installed via the AppStore. Alternatively, you can download Xcode (including older
versions) from the Apple Developer Website (https://developer.apple.com/downloads/index.action).
You have to register there (an Apple ID is not enough), but it’s free.

To get the command line tools, you need to start Xcode. You can cancel the startup dialog. Then
select in the menu Xcode → Preferences → Downloads → Components → Command Line Tools →
Install. Figure 3.1 shows the dialog to install the tools.

3.2. GNU Tools

PTXdist consists of a lot of shell scrips and MakeVles. Making them “portable” which means to use
only the minimal subset of commands and options speciVed by POSIX and maybe the Single Unix
SpeciVcation would be a nightmare. Instead, we just install the GNU variants. At a minimum, you
need to install the tools mentioned in table 3.1.

Even if you put /opt/local/bin (that’s the place where MacPorts installs its binaries) in front of your
$PATH, MacPorts doesn’t overwrite existing tools. So for example even if GNU date is present, the
command date still points to the BSD variant from Apple. The GNU variant is available as gdate.
In addition, they are provided without the preVx in /opt/local/libexec/gnubin.

7

https://developer.apple.com/downloads/index.action

3. Installing PTXdist

Figure 3.1.: Installation of Xcode commandline tools

3.3. Installation

Grab a copy of PTXdist at http://www.ptxdist.org/software/ptxdist/download/. You can also use the
GIT tree, but then you need install the Autotools on the host Vrst — they are not required when using
the tarball because that one ships with generated Vles.

First, extract the tarball and change into the newly created directory:

% tar xvf ptxdist-2012.04.0.tar.bz2
% cd ptxdist-2012.04.0/

After that, conVgure it:

% PATH=/opt/local/libexec/gnubin:$PATH \
./configure --prefix=/opt/ptxdist

The preVx /opt/ptxdist is just a proposal, you can use any other directory of your choice, but it’s
recommended to keep it separate from the system (/usr) and from MacPorts (/opt/local).

You might have noticed the PATH setting: We use the non-preVxed GNU tools. But we don’t need
to export the PATH because PTXdist remembers the location of the tools it has found in the the
conVguration step: It puts symlinks in the binary directory of the installation. We will see later.

Now just build the small parts of PTXdist that need to be built:

% make

Finally, install the binaries, scripts and recipes:

8

http://www.ptxdist.org/software/ptxdist/download/

3. Installing PTXdist

Name Description MacPorts / Fink
GNU awk The GNU awk utility. gawk
GNU Coreutils Standard programs like uname(1). coreutils
GNU tar The standard tape archiver with more options. gnutar / tar
GNU Findutils Vnd(1), locate(1) and xargs(1). findutils
GNU sed Command-line stream editor sed(1). gsed / sed
GNU wget Downloads Vles from the web via HTTP or FTP. wget
xz xz(1) and unxz(1) compression and uncompression

tools.
xz

quilt (optional) Tool to make working with the patches easier. quilt
dialog (optional) Needs to be installed to use ptxdist menu. dialog

Table 3.1.: GNU tools required to be installed to use PTXdist

% sudo make install

Now let’s look in /opt/ptxdist/lib/ptxdist-2012.04.0/bin:

% ls -l /opt/ptxdist/lib/ptxdist-2012.04.0/bin
lrwxr-xr-x 1 root admin 19 6 Apr 19:42 awk@ -> /opt/local/bin/gawk
lrwxr-xr-x 1 root admin 31 6 Apr 19:42 chmod@ -> /opt/local/libexec/gnubin/chmod
lrwxr-xr-x 1 root admin 31 6 Apr 19:42 chown@ -> /opt/local/libexec/gnubin/chown
lrwxr-xr-x 1 root admin 28 6 Apr 19:42 cp@ -> /opt/local/libexec/gnubin/cp
lrwxrwxr-x 1 bwalle admin 30 7 Apr 09:00 find@ -> /opt/local/libexec/gnubin/find
lrwxr-xr-x 1 root admin 33 6 Apr 19:42 install@ -> /opt/local/libexec/gnubin/install
lrwxr-xr-x 1 root admin 32 6 Apr 19:42 md5sum@ -> /opt/local/libexec/gnubin/md5sum
lrwxr-xr-x 1 root admin 31 6 Apr 19:42 mkdir@ -> /opt/local/libexec/gnubin/mkdir
lrwxr-xr-x 1 root admin 31 6 Apr 19:42 mknod@ -> /opt/local/libexec/gnubin/mknod
lrwxr-xr-x 1 root admin 28 6 Apr 19:42 mv@ -> /opt/local/libexec/gnubin/mv
-rwxrwxr-x 1 root admin 57707 6 Apr 19:40 ptxdist*
lrwxr-xr-x 1 root admin 24 6 Apr 19:42 python@ -> /opt/local/bin/python2.7
lrwxr-xr-x 1 root admin 34 6 Apr 19:42 readlink@ -> /opt/local/libexec/gnubin/readlink
lrwxr-xr-x 1 root admin 28 6 Apr 19:42 rm@ -> /opt/local/libexec/gnubin/rm
lrwxr-xr-x 1 root admin 31 6 Apr 19:42 rmdir@ -> /opt/local/libexec/gnubin/rmdir
lrwxr-xr-x 1 root admin 29 6 Apr 19:42 sed@ -> /opt/local/libexec/gnubin/sed
lrwxr-xr-x 1 root admin 30 6 Apr 19:42 stat@ -> /opt/local/libexec/gnubin/stat
lrwxr-xr-x 1 root admin 29 6 Apr 19:42 tar@ -> /opt/local/libexec/gnubin/tar
lrwxr-xr-x 1 root admin 31 6 Apr 19:42 xargs@ -> /opt/local/libexec/gnubin/xargs

As you can see, there are a lot of symbolic links in this directory. PTXdist sets the $PATH to include
that directory in the front just after startup and so the “right” tools are used without modiVcation of
the system’s $PATH. Latter would have a lot of side eUects, so it should be avoided.

Since we installed the software to /opt/ptxdist, we create a symlink to have it in the search path:

% sudo ln -s /opt/ptxdist/bin/ptxdist /usr/local/bin

3.4. First setup

Just after installing PTXdist, conVgure it with

ptxdist setup

Now a setup screen as shown in Vgure 3.2 should appear.

PTXdist documentation [1] explains the various options.

9

3. Installing PTXdist

Figure 3.2.: Setup screen of PTXdist

10

4. Building an OSELAS.Toolchain

While PTXdist can be used with most (cross) toolchains, the easiest is to use OSELAS.Toolchain
(http://www.pengutronix.de/oselas/toolchain/index_en.html).

As the current GIT version of the toolchain contains some unreleased Vxes, I recommend using that
one1:

% git clone git://git.pengutronix.de/git/OSELAS.Toolchain.git
% cd OSELAS.Toolchain

In our example we build the toolchain for armv4 to be used with Qemu, but nothing diUers if you
select another one.

% ptxdist select ptxconfigs/arm-v4t-*.ptxconfig

Now the recommended way would be to use the version of PTXdist for which the current project was
built. However, PTXdist 2011.11 doesn’t contain the Vxes required for Mac OS. So as a exception, we
migrate the project:

% ptxdist migrate

You can run git diff to see what that command changed. If everything went right, only some
version strings should have changed. Now we can build the toolchain which takes some hours, even
on up-to-date hardware:

% ulimit -n 5000
% ptxdist go

The call to ulimit(1) is required at least on my Mac because otherwise I get the error “too many open
Vles” when building glibc, even when I build with --j-intern=1 which disables parallelization. The
error results in the failure to build codepage conversion objects.

Since the toolchain will be installed into /opt, sudo asks you to enter your password.

After the toolchain build has Vnished, you should have /opt/OSELAS.Toolchain-2011.11.0/arm-v4t-
linux-gnueabi/gcc-4.6.2-glibc-2.14.1-binutils-2.21.1a-kernel-2.6.39-sanitized/bin/arm-v4t-linux-gnueabi-
gcc and some other Vles in that directory such as arm-v4t-linux-gnueabi-gdb for remote debugging.

To avoid accidentally overwriting some Vles of the toolchain, remove write permission with

% sudo chown -R root:wheel /opt/OSELAS.Toolchain-2011.11.0

1Since “current GIT” is a moving target, you can use the hash 7f195586c0170ba6ec71c01ab73d465b94d6dbbd.

11

http://www.pengutronix.de/oselas/toolchain/index_en.html

5. Building an Embedded Linux project

5.1. Using OSELAS.BSP-Pengutronix-Generic

The OSELAS.BSP-Pengutronix-Generic BSP from Pengutronix is a good start since it can be used to
try out PTXdist without real hardware1. In addition, it doesn’t need parts of PTXdist that currently
don’t work on Mac OS, see section 6.

5.1.1. Getting the BSP

Since the last release is from November 2011, I created a public GIT repository which contains a more
up-to-date version of the BSP. Apart from the project migration to the new version, only minor Vxes
were made and the documentation [1] still fully applies.

To retrieve my forked version of the BSP, use

% git clone https://bitbucket.org/bwalle/oselas.bsp-pengutronix-generic.git
% git checkout -b macos origin/macos

Select the arm variant:

% ptxdist platform configs/arm-qemu-2011.11.0/platformconfig

and build the full image with

% ptxdist images

After that, the directory platform-versatilepb/images should contain following Vles:

kernelimage the Linux kernel

root.ext2 the ext2 root Vle system

hd.img a disk image that contains a partition table in addition to the Vle system

1except from the computer on which PTXdist runs, of course

12

5. Building an Embedded Linux project

5.1.2. Building FSF GCC

Before building Qemu we have to download another toolchain. Mac OS ships with LLVM GCC
(http://www.llvm.org). However, to successfully run Qemu we need FSF2 GCC which is basically the
“real” GCC as you know it from Linux. One of the reasons why Apple switched from FSF GCC to
LLVM is licensing. Apple wants to avoid GPL in version 3.

If you have an older Mac OS installation that has been updated from time to time, you may have
already an FSF GCC available as gcc-4.2. Otherwise, MacPorts makes it easy to install the last FSF
GCC that Apple provided:

% sudo port install apple-gcc42

5.1.3. Building Qemu

Unfortunately, the MacPorts version of Qemu for ARM doesn’t work, at least it didn’t in my tests.
However, the current3 GIT version does. So let’s just build our own Qemu.

Now retrieve the Qemu GIT tree with:

% git clone git://git.qemu.org/qemu.git
% cd qemu

We need one patch that is not (yet) mainline to apply. The patch is fromMacPorts, but for convenience
I added it to the BSP git repo. To apply it, just use

% git clone git://git.qemu.org/qemu.git
% patch -p0 -i \

<path-to-bsp>/configs/arm-qemu-2011.11.0/patches ...
.../patch-cocoa-uint16-redefined.diff

ConVgure and build Qemu4:

% ./configure --cc=gcc-apple-4.2 --host-cc=gcc-apple-4.2 \
--target-list=arm-softmmu

% make -j$[2 * $(sysctl -n hw.ncpu)]

After a while, the Vle ./arm-softmmu/qemu-system-arm should be ready.

5.1.4. Running the System

Change back to the BSP directory and execute

PATH=../qemu/arm-softmmu/:$PATH configs/arm-qemu-2011.11.0/run

13

http://www.llvm.org

5. Building an Embedded Linux project

Figure 5.1.: Qemu running an ARM kernel

If you have another directory layout, adjust the $PATH setting. After a while, you should see the
login prompt as shown in Vgure 5.1. You should be able to login as root without password.

Now open another Terminal window and execute telnet localhost 4444. Even there you should
be able to login as root. The Qemu network stack has been setup to forward the port 4444 the host
to port 23 of the emulated system. Just look in the Vle conVgs/arm-qemu-2011.11.0/run to see how
this was made.

5.2. Using real Hardware

Embedded Linux development is boring without hardware toys. You should be able to use any
PTXdist-based BSP with Mac OS as long as you don’t need something that is listed in section 6.

If you have a Beagleboard (http://beagleboard.org/) or a BeagleBone (http://beagleboard.org/bone),
my BSP at https://bitbucket.org/bwalle/ptxdist-arm-boards may be a good start.

2Free Software Foundation
37914cb3c738a03a5d5f7cb32c3768bc62eb1e944
4You may replace gcc-apple-4.2 by gcc-4.2 if you didn’t use MacPorts to build that GCC

14

http://beagleboard.org/
http://beagleboard.org/bone
https://bitbucket.org/bwalle/ptxdist-arm-boards

6. Limitations

This section should list was currently is known to not work.

6.1. Building UBI or JFFS2 images

Currently the host-mtd-utils don’t compile. I already have something that works ready at https:
//bitbucket.org/bwalle/mtd-utils, but it’s not yet integrated.

6.2. Linux kernel

Not every Linux kernel version can be compiled without patches. However, kernel 3.4 at least on
ARM (tested OMAP3, Marvell Kirkwood and the “versatilepb” platform used in section 5.1) works.

Some patches you may need1:

• scripts/Kbuild.include: Fix portability problem of "echo -e"
(875de98623fa2b29f0cb19915fe3292ab6daa1cb)

• ARM: 7184/1: fix $(CROSS_COMPILE) prefix missing from size invocation
(1ec332a3756a22405d2fbd5352e3afab556cb205)

6.3. Bootloader

As far as I know, Barebox (http://www.barebox.org) currently doesn’t build while U-Boot (http://
www.denx.de/wiki/U-Boot) works. Some U-Boot developers occasionally run Mac OS themselves.

1all GIT hashes are for git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

15

https://bitbucket.org/bwalle/mtd-utils
https://bitbucket.org/bwalle/mtd-utils
http://www.barebox.org
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

7. Using a Mac for Embedded Linux
Development

This section doesn’t have anything to do with PTXdist in particular. Instead, it collects some hints
that makes Linux development easier with a Mac.

7.1. Using a serial console

Macs don’t have a RS-232 port, but PC Laptops also don’t have one. Most USB-to-RS-232 adapters also
work on Mac OS. The interfaces are named /dev/tty.name, for example /dev/tty.usbserial-TIV90V1YA
or just /dev/tty.usbserial.

Most console-based Terminal programs can be also used on Mac OS. screen(1) is even shipped by
default, but I prefer picocom(1) which can be installed using MacPorts and used like

picocom -b 115200 /dev/tty.usbserial-TIV90V1YA

To quit it, use C-a C-q. To send a break character which is important for using Sysrq [4], use C-a C-\
followed by the key that should sent to the kernel. If you can’t remember, use h for help.

7.2. Exporting directories via NFS

For application development exporting the root Vle system on NFS rather than copying it to the target
again and again, improves the turnaround speed a lot. Using Mac OS is surprisingly easy.

Just create a Vle /etc/exports (if it doesn’t already exist) containling a line such as

/Volumes/Daten/devel -maproot=0 -network 192.168.0.0 -mask 255.255.255.0

The option -maproot=0 is basically the same as no_root_squash on Linux. You can even map other
users, see the manpage exports(5) for details.

Creating the Vle — at least if you get it initially right — should be suXcient. The NFS server automat-
ically detects creation or modiVcation of that Vle. However, one just can use nfsd status to check
the status of the NFS server and nfsd checkexports to check the syntax after editing /etc/exports.
Read nfsd(8) for more details.

Like on Linux, the showmount(8) command shows what you’re exporting:

16

7. Using a Mac for Embedded Linux Development

% sudo showmount -e
Exports list on localhost:
/Volumes/Daten/devel 192.168.0.0

On the target side everything stays the same.

17

7. Using a Mac for Embedded Linux Development

7.3. Mounting ext2 partitions

When working with root Vle systems on SD cards it’s quite useful if you cannot only copy images
but also look at the Vles. Especially as most Macs have a builtin SD card reader.

While Mac OS has no kernel driver for ext2, like Linux Mac OS supports Vle systems in userspace.
Just install ext2fuse with

% sudo port install ext2fuse

and then you’re able to mount an ext2 or ext3 partition using

% diskutil list # find out the name of the disk
% ext2fuse /dev/disk1s2 ~/mnt

The important thing is that ext2fuse has to be executed as the same user as the one that works with
the Vle. So the mountpoint must be accessible as the user — that’s why I’m not using a directory
below /Volumes.

18

A. About this Document

This document has been typeset with LATEX. The sources of the document can be downloaded at
https://bitbucket.org/bwalle/ptxdist-macos-doc.

The canonical location for the PDF is http://bwalle.de/docs/ptxdist_mac.pdf. Please send any feed-
back to me via email bernhard@bwalle.de.

19

https://bitbucket.org/bwalle/ptxdist-macos-doc
http://bwalle.de/docs/ptxdist_mac.pdf
bernhard@bwalle.de

B. Change History

Date ModiVcation
2012-04-21 Add hint to disable Spotlight indexing.
2012-04-20 Ad description about case insensitive Vle system.

Add dialog as optional dependency.

20

Bibliography

[1] How to become a PTXdist Guru,
http://www.ptxdist.org/software/ptxdist/appnotes/OSELAS.BSP-Pengutronix-Generic-arm-Quickstart.
pdf

[2] Installing PTXdist,
http://www.ptxdist.org/software/ptxdist/appnotes/AppNote_InstallingPtxdist.pdf

[3] MacPorts Guide,
Mark Duling, Dr. Michael A Maibaum, Will Barton,
http://guide.macports.org/

[4] Linux Magic System Request Key Hacks
http://kernel.org/doc/Documentation/sysrq.txt

21

http://www.ptxdist.org/software/ptxdist/appnotes/OSELAS.BSP-Pengutronix-Generic-arm-Quickstart.pdf
http://www.ptxdist.org/software/ptxdist/appnotes/OSELAS.BSP-Pengutronix-Generic-arm-Quickstart.pdf
http://www.ptxdist.org/software/ptxdist/appnotes/AppNote_InstallingPtxdist.pdf
http://guide.macports.org/
http://kernel.org/doc/Documentation/sysrq.txt

	Motivation
	Basics
	Getting OpenSource Software on Mac OS
	Preparing the Hard Disk
	Creating and Using a Sparse Bundle

	Installing PTXdist
	Requirements
	Mac OS
	Host compiler

	GNU Tools
	Installation
	First setup

	Building an OSELAS.Toolchain
	Building an Embedded Linux project
	Using OSELAS.BSP-Pengutronix-Generic
	Getting the BSP
	Building FSF GCC
	Building Qemu
	Running the System

	Using real Hardware

	Limitations
	Building UBI or JFFS2 images
	Linux kernel
	Bootloader

	Using a Mac for Embedded Linux Development
	Using a serial console
	Exporting directories via NFS
	Mounting ext2 partitions

	About this Document
	Change History
	Bibliography

